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Background

Safety Is Paramount!
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A safety property asserts that some “bad thing” does not happen during execution [Leslie Lamport, 1977]
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A safety property asserts that some “bad thing” does not happen during execution [Leslie Lamport, 1977]

It is closely related to set-invariance for dynamical systems [Aaron D. Ames, et.al., 2019]

Dynamical systems:

® Discrete-time Systems: x(k+ 1) = f (x(k))

® Continuous-time Systems: % = f(x)
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The real system is highly complex: the complete information of such a system can indeed be challenging to

acquire, especially in open environments.
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The real system is highly complex: the complete information of such a system can indeed be challenging to

acquire, especially in open environments.

How do we guarantee safety of these systems?
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Safe Robust Invariance Verification

x(k+ 1) = f(x(k),d(k))

® d(k) € D is the perturbation input
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Safe Robust Invariance Verification
x(k+ 1) = f(x(k),d(k))

® d(k) € D is the perturbation input

Safe robust invariance verification:

Given a safe set X' and an initial set Xy, € X, to
verify that the system starting from X, will
remain inside the safe set X for all time,
regardless of disturbances
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Safe Robust Invariance Verification
x(k+ 1) = f(x(k),d(k))

® d(k) € D is the perturbation input

Safe robust invariance verification: Given A > 0, finding Barrier Functions B(x) :
Given a safe set X and an initial set X; € X, to (B (x) =0, Vx € X,,
verify that the system starting from X, will ) B(f(x, d)) > AB(x), Vx€X,vd €D,

remain inside. the safe set X for all time, kB(x) <0, Vx € R™\ X.
regardless of disturbances
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Safe Robust Invariance Verification
x(k+ 1) = f(x(k),d(k))

® d(k) € D is the perturbation input

Safe robust invariance verification: Given A > 0, finding Barrier Functions B(x) :

Given a safe set X and an initial set X; € X, to (B (x) =0, Vx € X,,

verify that the system starting from X, will « B(f(x, d)) > AB(x), Vxe€X,vdeD,
remain inside the safe set X for all time, \B(x) <0 Vx € R™\ X.

regardless of disturbances
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Safe Robust Invariance Verification
x(k+ 1) = f(x(k),d(k))

® d(k) € D is the perturbation input

Safe robust invariance verification: Given A > 0, finding Barrier Functions B(x) :

Given a safe set X and an initial set X; € X, to (B (x) =0, Vx € X,,

verify that the system starting from X, will « B(f(x, d)) > AB(x), Vxe€X,vdeD,
remain inside the safe set X for all time, \B(x) <0 Vx € R™\ X.

regardless of disturbances

A

Too Conservative!
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Safe Probabilistic Invariance Verification
x(k+ 1) = f(x(k),d(k))

® d(k) € D is the stochastic perturbation input, following certain known distribution
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Safe Probabilistic Invariance Verification
x(k+ 1) = f(x(k),d(k))

® d(k) € D is the stochastic perturbation input, following certain known distribution

Safe probabilistic invariance verification:

Given a safe set X and an initial set X;; © X, to verify that the system starting from X, will

remain inside the safe set X’ with a certain probability
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Safe Probabilistic Invariance Verification

x(k+ 1) = f(x(k),d(k))

® d(k) € D is the stochastic perturbation input, following certain known distribution

Safe probabilistic invariance verification:

Given a safe set X and an initial set X;; © X, to verify that the system starting from X, will
remain inside the safe set X’ with a certain probability

This approach reduces conservatism by allowing probabilistic violations
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Related Work

® Probabilistic Invariant Sets [e.g., E. Kofman, et.al., 2012 (Kofman); E. Kofman, et.al., 2016
(Kofman); L. Hewing, et.al., ECC 2018]: Linear Systems

® Finite-time Probabilistic Invariance Problem [e.g., A. Abate, et. al., 2008 (Automatica); A. Abate, et.
Al., 2010 (European Journal of Control); C. Santoyo et.al, 2021 (Automatica)]

® Infinite-time Probabilistic Invariance Problem:

» Finite-time Probabilistic Invariance + Robust Invariant Sets [e.g., I. Tkachev and A. Abate, et.al.,
CDC 2011; I. Tkachev and A. Abate, et.al., 2014 (Theoretical Computer Science) |

» Barrier Certificates Methods [e.g., M. Anand, et. al., HSCC 2022; Peixin Wang, et.al., CAV 2024]
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Problem Formulation

Stochastic Discrete-time Systems
x(k + 1) = f(x(k),d(k)), x(0) = xg
® d(k) € D is the stochastic perturbation input.

® d(0),d(1),..., are independent and identically distributed (i.i.d) on a probability space (D, F, IP), with support D :
for any measurable set B € D, Prob(d(l) € B) = P(B), VI € N. The expectation is denoted by E[-].

A disturbance signal 7 is an ordered sequence {d(k), k € N}: a sample path of a stochastic process defined on
the canonical sample space 2 = D X D X --- with the probability measure P* =P X P X ---.

Trajectory ¢():N = R%: ¢+ 1) = £ (97200, m(K)), $72(0) = x
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Given a safe set X and an initial set X3 € X,

the safe probabilistic invariance verification is to compute lower and upper bounds, denoted by €; € [0,1] and
€, € [0,1] respectively, for the safety probability that the system, starting from any state in X, will remain inside
the safe set X for all time, 1.e.,

to compute €; and €, such that

€1 <P®(VkeN. ¢;°(k) € X | xg € Xy) < €.
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Doob’s Supermartingale Inequality Based Method

Doob’s Supermartingale Inequality [J. Ville, 1939]
Let (Q4, F, P;) be the probability space and {B;};cy be a non-negative supermartingale, then for b > 0,

P1(§E£Bi2b|30) S%.
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Doob’s Supermartingale Inequality Based Method

Doob’s Supermartingale Inequality [J. Ville, 1939]

Let (Q4, F, P;) be the probability space and {B;};cy be a non-negative supermartingale, then for b > 0,
B
P;(supB; =b| By <—.
1( N ! | 0) b

In [M. Anand, et. al., HSCC 2022],
Under the assumption that Q c R" is a robust invariant set,
ie, f(x,d):QxD->Q, and X, €, if there exists

v(x): Q - R such that
(v(x) <1—¢4, Vx € Xy,
v(x) =0, Vx € (),

IE[v(f(x, d))] < v(x), Vx € (),
vx) =1, Vx € Q\ X,

where 0 \ X is a set of unsafe states, then
P°(vk €N. ¢} (k) € X | xg € Xy) = €.
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Doob’s Supermartingale Inequality Based Method

Doob’s Supermartingale Inequality [J. Ville, 1939]

Let (Q4, F, P;) be the probability space and {B;};cy be a non-negative supermartingale, then for b > 0,

Pl(silélNII)Bi >b | BO) S%.

In [M. Anand, et. al., HSCC 2022],
Under the assumption that Q c R" is a robust invariant
set, i.e., f(x,d): QXD — Q,and X, € (), if there exists

v(x): Q — R such that

(v(x) <1—¢4, Vx € X,

v(x) =0, Vx € (), O
IE[v(f(x, d))] < v(x), Vx € (),
vx) =1, Vx € Q\ X,

where 0 \ X i1s a set of unsafe states, then
P°(vk €N. ¢} (k) € X | xg € Xy) = €.
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Doob’s Supermartingale Inequality Based Method

Doob’s Supermartingale Inequality [J. Ville, 1939]

Let (4, F, P;) be the probability space and {B;};en be a non-negative supermartingale, then for b > 0,

Pl(silellgBiZblBo) S%.

In [M. Anand, et. al., HSCC 2022],

Under the assumption that Q c R" is a robust invariant
set, i.e., f(x,d): QXD — Q, and X, € Q, if there exists
v(x): Q - R such that

(v(x) <1—¢4, Vx € X,
v(x) =0, Vx € (),
IE[v(f(x, d))] < v(x), Vx € (),

vx) =1, Vx € Q\ X,

* Q #+ R™: challening to compute (if it exists)
where () \ X 1s a set of unsafe states, then e Q = R™: producing conservative lower bounds
P°(vk €N. ¢} (k) € X | xg € Xy) = €.
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Running Example

A computer-based model, which is modified from the reversed-time Van der Pol oscillator based on
Euler's method with the time step 0.01:

x(I+1) =x()—0.02y(D),
y(l+1) = y(D) +0.01 ((0.8 + d(1))x(1) + 10(x2() — 0.21)y(1)).

« d(-):N->D=[-0.1,0.1]
« X={(x,y) 1 x*+y*=1< 0}
« Xo={(x,9) 1 x*+y2—-0.01 <0}

» Monto-carlo method: P®(Vk € N. ¢p;° (k) € X | xg € Xp) = 1

< Method in [M. Anand, et. al., HSCC 2022](© = R?)+ semi-definite programming tool:
P°(vk €N. ¢ (k) € X | xg € Xo) = 2.1368e — 07
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Doob’s Supermartingale Inequality Based Method

An auxiliary system

x(k+1) = f(x(k),d(k))

with
flr,d) = flx,d) - 1x(x) + x - 1 (%)

X is a set containing the union of the set X and all
reachable states starting from X within one step:

{x|x=f(xgd),xg€EX,dEDIUXCX
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Doob’s Supermartingale Inequality Based Method

An auxiliary system

x(k+1) = f(x(k),d(k))

with
flr,d) = flx,d) - 1x(x) + x - 1 (%)

X is a set containing the union of the set X and all
reachable states starting from X within one step:

{x|x=f(xgd),xg€EX,dEDIUXCX

X is a robust invariant set for the auxiliary system
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Doob’s Supermartingale Inequality Based Method

An auxiliary system

x(k+1) = f(x(k),d(k))

with
flr,d) = flx,d) - 1x(x) + x - 1 (%)

X is a set containing the union of the set X and all
reachable states starting from X within one step:

{x|x=f(xgd),xg€EX,dEDIUXCX

X is a robust invariant set for the auxiliary system

Proposition 1 P®( vk € N. ¢° (k) € X | xg € X )=P*(Vk €N. ¢,°(k) € X | x5 € X))
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Doob’s Supermartingale Inequality Based Method

Under the assumption that Q c R"™ is a robust If there exists v(x): X — R such that
1nvar1a1}t set, i.e., f(x,d): QXD - Q,and X € Q, if () <1—e;, Vx € X,
there exists v(x): Q — R such that ~
() <1 e v € X _ v(x) =0, Vx € X,
v v > ) E lv (f(x d))] < v(x) Vx € X
J v(x) =0, Vx € ), ’ = ’ ’
E[v(f(x,d))] < v(x), Vx € Q, Lv(x) = 1, Vx € X\ X,
> 1, Vx € Q\ X, .
(%) * €2 then P°(Vk € N. ¢° (k) € X | xo € X ) = €.
then ]POO(VkEN ¢79.;0(k) EXl X0 EXO) 261.
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Doob’s Supermartingale Inequality Based Method

Under the assumption that Q c R"™ is a robust If there exists v(x): X — R such that
invariant set, i.e., f(x,d): QXD - Q,and X € Q, if (p(x) <1—e¢ Vx € X
there exists v(x): Q0 = R such that () ; 0 v vr 5(9,

(v(x) <1— ¢y, Vx € Xy, ‘ ) 7 _

v(x) =0, Vx € Q, E lv (f(x, d))] < v(x), Vx € X,
) [E[v(f(x, d))] < v(x), Vx € Q, Lv(x) =1, Vx € X\ X,
> 1, VX € Q\ X, .

\v(%) x €400 then P*(Vk € N. ¢ ° (k) € X | %9 € X)) = €.

then P°(Vk €N. ¢2° (k) EX | x0 € Xy ) = €. .

Theorem 1 If there exists v(x): X — R such that

(v(x) <1—¢, Vx € X,

v(x) =0, Vx € X,
) [E[v(f(x, d))] < v(x), Vx € X,
\v(x)21, Vx € X\ X,

then [POO(Vk € N. ¢;§O(k) eX | Xo (S XO) = €1.
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Running Example

A computer-based model, which is modified from the reversed-time Van der Pol oscillator based on
Euler's method with the time step 0.01:

x(I+1) =x()—0.02y(D),
y(l+1) = y(D) +0.01 ((0.8 + d(1))x(1) + 10(x2() — 0.21)y(1)).

« d(-):N->D=[-0.1,0.1]
« X={(x,y) 1 x*+y*=1< 0}
« Xo={(x,9) 1 x*+y2—-0.01 <0}

» Monto-carlo method: P®(Vk € N. ¢p;° (k) € X | xg € Xp) = 1

< Method in [M. Anand, et. al., HSCC 2022](© = R?)+ semi-definite programming tool:
P°(vk €N. ¢ (k) € X | xg € Xo) = 2.1368e — 07
% Our method (X = { (x,y) | x* + y*> — 2 < 0}) +semi-definite programming tool:
P*(vk €N. ¢p;° (k) € X | xg € Xy) = 0.9465
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Doob’s Supermartingale Inequality Based Method

In [M. Anand, et. al., HSCC 2022],
Under the assumption that {0 € R™ is a robust invariant set, i.c.,
flx,d): QXD — Q,and X € Q, ifthere exists v(x): Q - R
such that
(v(x) < €y, VX € X,,
v(x) =0, Vx € Q, Theorem 2 Let X be a closed set. If there exists
VE(F(x, )] — v(x) < =6, VX €O\ (Q\X), v(x): X = R such that
v(x) =1, vx € 90\ 3(Q\ X), (v(x) < €, VX € X,
then P*(Vk € N. ¢3° (k) € X | xo € X ) < 6. v(x) = 0, vx € X,
\E[v(f(x, d))] - v(x) < -8, Vx € X,
v(x) =1, Vx €aX\ a(X\ X),
then
P(vk €N. ¢ (k) EX | xg € Xy) < 6,
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Doob’s Supermartingale Inequality Based Method

In [M. Anand, et. al., HSCC 2022],
Under the assumption that {0 € R™ is a robust invariant set, i.c.,
flx,d): QXD — Q,and X € Q, ifthere exists v(x): Q - R
such that
(v(x) < €y, VX € X,,
v(x) =0, Vx € Q, Theorem 2 Let X be a closed set. If there exists
v(x) = 1, Vx € 0Q\d(Q\ X), (v(x) < €y, Vx € X,
then P*(Vk € N. ¢3° (k) € X | xo € X ) < 6. v(x) = 0, Vx € X,
\E[v(f(x, d))] - v(x) < 8, VX € X,
v =21, vx € 0X \ (X \ X),
then
P(vk €N. ¢ (k) EX | xg € Xy) < 6,

If v(x) is bounded over X, it provides strong guarantees of leaving the safe set Xalmost surely,
i.e., P°(Vk € N. ¢p7° (k) € X | x9 € X )=0.
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Doob’s Supermartingale Inequality Based Method

In [M. Anand, et. al., HSCC 2022],
Under the assumption that 0 € R™ is a robust invariant set, i.c.,
flx,d): QXD - Q,and X € Q, ifthere exists v(x): Q - R
such that
(v(x) < €y, VX € X,,
v(x) =0, Vx € Q, Theorem 2 Let X be a closed set. If there exists
) [E[v(f(x, d))] —v(x) < -6, vx e Q\ (Q\ X), v(x): X = R such that
v(x) = 1, Vx € 0Q\d(Q\ X), (v(x) < €y, Vx € X,
then P*(Vk € N. ¢3° (k) € X | xo € X ) < 6. v(x) = 0, Vx € X,
< [E[v(f(x, d))] —v(x) < -6, Vx € X,
v =21, vx € 0X \ (X \ X),
then
P(vk €N. ¢ (k) EX | xg € Xy) < 6,

If v(x) is bounded over X, it provides strong guarantees of leaving the safe set Xalmost surely,
i.e., P°(Vk € N. ¢p7° (k) € X | x9 € X )=0.
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Equation Relaxation Based Method

In [B. Xue, et. al., ACC 2021],
Given a safe set X, a target set X} and an initial set Xy, where X, Xy © X,

if there exist bounded functions v(x): X — R and w(x): X — R such that
v(x) =E lv (f (x, d))] ,Vx € X,
v(x) = 1y, (@0) + E|w (f (r.d))| - w(@), vx € X.

Then,
P*(3k € N. ¢,° (k) € X, AVIE[0,k]. ¢,°(D) € X | x9 € Xy) = v(xo),
where f (x,d) = f(x,d) - 1(x) + x - 155\x(x)+ x - 1y (x)

X:f(x,d) = f(x,d)

B. Xue, R. Li, N. Zhan, and M. Fraenzle. Reach-
avoid analysis for stochastic discrete-time

systems. In 2021 American Control Conference
(ACC), pages 4879-4885. IEEE, 2021
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Equation Relaxation Based Method

In [B. Xue, et. al., ACC 2021],
Given a safe set X, a target set X} and an initial set Xy, where X, Xy © X,

if there exist bounded functions v(x): X — R and w(x): X — R such that
v(x) =E lv (f (x, d))] ,Vx € X,
v(x) = 1y, (@0) + E|w (f (r.d))| - w(@), vx € X.

Then,
P*(3k € N. ¢,° (k) € X, AVIE[0,k]. ¢,°(D) € X | x9 € Xy) = v(xo),
where f (x,d) = f(x,d) - 1(x) + x - 155\x(x)+ x - 1y (x)

X is a set containing the union of the set X and all reachable states starting
from X within one step

{x|x=f(xgd),xg€X,dEDIUVUXCX

X:f(x,d) = f(x,d)

B. Xue, R. Li, N. Zhan, and M. Fraenzle. Reach-
avoid analysis for stochastic discrete-time

systems. In 2021 American Control Conference
(ACC), pages 4879-4885. IEEE, 2021
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Equation Relaxation Based Method

Given a safe set X and an initial set Xy, where Xy € X, if there exist
bounded functions v(x): X - R and w(x): X — R such that

v(x) = E [v (f(x, d))], vx € X,

v(x) = 1f\x(3€) + E lw (f(x, d))] —w(x),Vx € X.
Then,

P®(3k € N. ¢ (k) E X\ X | xg € X ) = v(x).
Thus,

P°(vk €N. ¢°(k) € X | xg € Xp) = 1 — v(xy).
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Equation Relaxation Based Method

Given a safe set X and an initial set X;, where Xy € X, if there exist
bounded functions v(x): X = R and w(x): X — R such that
v(x) <1—¢, Vx € X,

v(x) > E [v (f(x, d))] ) Vx € X,
v(x) 2 1\ () +E [W (f(x, d))] —w(x),Vx € X.

Then,
P°(Vvk €N. ¢7° (k) € X | xo € Xy) = €.
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Equation Relaxation Based Method

Given a safe set X and an initial set X;, where Xy € X, if there exist
bounded functions v(x): X = R and w(x): X — R such that
v(x) <1—¢, Vx € X,

v(x) > E [v (f(x, d))] ) Vx € X,
v(x) 2 1\ () +E [W (f(x, d))] —w(x),Vx € X.

Then,
P°(Vvk €N. ¢7° (k) € X | xo € Xy) = €.

) reo=reo m@rr 10,

Theorem 3 Given a safe set X and an initial set Xy, where X;; € X, if there
exist bounded functions v(x): X — R and w(x): X — R such that

(v(x) <1—¢y, Vx € X,
v(x) = IE[v(f(x, d))], Vx € X,
v(x) = ]E[w(f(x, d))] —w(x), Vx € X,
v(x) =1, vx € X\ X.

Then,
Pe(vk € N. ¢ (k) € X | xo € Xy) = €.
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Equation Relaxation Based Method

Given a safe set X and an initial set X;, where Xy € X, if there exist
bounded functions v(x): X = R and w(x): X — R such that
v(x) <1—¢, Vx € X,

v(x) > E [v (f(x d))] ) Vx € X,

v(x) = 1px(x) + E [w (f(x, d))] —w(x),vx € X.

Then,
P°(Vvk €N. ¢7° (k) € X | xo € Xy) = €.

Given a safe set X and an initial set Xj, where X;; € X, if there exist
bounded functions v(x): X = R and w(x): X — R such that
v(x) = 1—¢€,, Vx € X,

v(x) < E [v (f(x, d))], vx € X,
v(x) < 1z (x) +E [W (f(x, d))] —w(x),vx € X.

Then,
P°( vk € N. ¢;° (k) € X | xg € Xp) < €.

) reo=reo m@rr 10, [}

Theorem 3 Given a safe set X and an initial set Xy, where X;; € X, if there
exist bounded functions v(x): X — R and w(x): X — R such that

(v(x) <1—¢y, Vx € X,
v(x) = IE[v(f(x, d))], Vx € X,

\ve0) = Ew(fx, )] - w(), Vxex,
v(x) =1, vx € X\ X.

Then,
Pe(vk € N. ¢ (k) € X | xo € Xy) = €.

Theorem 4 Given a safe set X and an initial set Xy, where Xy € X, if
there exist bounded functions v(x): X = R and w(x): X = R such that

(v(x) = 1— €y, Vx € X,
v(x) < ]E[v(f(x, d))], Vx € X,
v(x) < ]E[W(f(x, d))] —w(x), Vx € X,

v(x) <1, vx € X\ X.

Then,
Pe( vk € N. ¢p2° (k) € X | xo € Xy) < €.
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Comparison

Doob’s Supermartingale Inequality Based Method Equation Relaxation Based Method

Theorem 1 Given a safe set X and an initial set Xy, where Xy € X, if

Theorem 3 Given a safe set X and an initial set X, where Xy € X, if
there exists v(x): X = R such that

there exist bounded functions v(x): X = R and w(x): X — R such that

(v(x) <1—¢, Vx € Xo, (v(x) <1—¢y, Vx € X,

Jv@) 20, vx € X, v(x) = E[v(f(x,d))], Vx € X,
E[v(f(x, d))] < v(x), Vx € Jf' v(x) = Elw(f(x,d)] — w), Vx € X,
v =1, VX € X\ X, v(x) =1, vx € X\ X,

then then

PP(vk €N. ¢ (k) € X | xg € Xy) = €.

Pe(vk € N. ¢ (k) € X | xg € Xo) = €;.
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Equation Relaxation Based Method

then

(v(x) <1—¢€y,

v(x) =0,
VB (F &, )] < v(0),
v(x) =1,

Theorem 1 Given a safe set X and an initial set Xy, where Xy € X, if
there exists v(x): X — R such that

Vx EXO,
vx € X,
Vx € X,

Vx € X\ X,

PP(vk €N. ¢ (k) € X | xg € Xy) = €.

=)

Theorem 3 Given a safe set X and an initial set X, where Xy € X, if
there exist bounded functions v(x): X = R and w(x): X — R such that

then

(v(x) <1—¢y, Vx € X,
v(x) = IE[v(f(x, d))], Vx € X,
v(x) = [E[W(f(x, d))] —w(x), Vx € X,
v(x) =1, vx € X\ X,

Pe( vk € N. ¢ (k) € X | xo € Xy) = €.

Taoran Wu, Yiqing Yu, Bican Xia, Ji Wang and Bai Xue. A Framework for Safe Probabilistic Invariance Verification
of Stochastic Dynamical Systems. Arxiv, 2024.



https://arxiv.org/pdf/2404.09007.pdf
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Comparison

Doob’s Supermartingale Inequality Based Method Equation Relaxation Based Method

Theorem 1 Given a safe set X and an initial set Xy, where Xy € X, if
there exists v(x): X — R such that

Theorem 3 Given a safe set X and an initial set X, where Xy € X, if
there exist bounded functions v(x): X = R and w(x): X — R such that

(v(x) <1—¢, Vx € Xo, (v(x) <1—¢y, Vx € X,
v(x) 20, vx € X, (— v(x) = E[v(f(x,d))] Vx € X

< ,ad))|, ,
IE[v(f(x, d))] < v(x), Vx € ?VC' < v(x) = [E[W(f(x, d))] —w(x), Vx € X,
) 21, Vx € X\ X, v(x) =1, vx € X\ X,

then then

PP(vk €N. ¢ (k) € X | xg € Xy) = €.

Pe( vk € N. ¢ (k) € X | xo € Xy) = €.
Sufficient and Necessary Barrier-like Conditions

Bai Xue. Sufficient and Necessary Barrier-like Conditions for Safety and Reach-avoid Verification of Stochastic Discrete-
time Systems. Arxiv, 2024.


https://arxiv.org/abs/2408.15572
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Comparison

Doob’s Supermartingale Inequality Based Method Equation Relaxation Based Method
Theorem 1 Given a safe set X and an initial set Xy, where Xy € X, if Theorem 3 Given a safe set X and an initial set X, where Xy € X, if
there exists v(x): X — R such that there exist bounded functions v(x): X — R and w(x): X — R such that
(v(x) <1-—¢, Vx € 3£0» (v(x) <1—¢y, Vx € X,
v(x) =0, Vx € X, “ v(x) = E[v(f(x, d))], Vx € X,
E[v(f(x,d))] < v(x), vx € X, < v(x) = E[w(f(x,d))] - wx), Vx € X,
v(x) =1, Vx e X\ X, @) =1, vx € X\ X,
then then
Pe(vk € N. ¢ (k) € X | x9 € Xy) = €. Pe(Vk € N. ¢;° (k) € X | xg € Xp) = €;.
Theorem 2 Let X be a closed set. If there exists v(x): X — R such that Theorem 4 Given a safe set X and an initial set Xy, where X, € X, if
there exist bounded functions v(x): X —» R and w(x): X — R such that
rv(x) < €2, Vx € XOJ (
v(x) =1—¢€y, Vx € X,
) Ep(f G )] = v() < =6, . VxeX, v(x) < E[v(f(x, )] vx € X,
v(x) =1, VX € 0X '\ 6(X\JQ, v(x) < IE‘.[W(f(x, d))] —w(x), Vx € X,
Lv(x) =0, Vx € X, v(x) <1, Vx € X\ X,
then
Pe(vk €N. ¢ (k) € X | x0 € Xp) < 3. then Pe( vk € N. p3° (k) € X | xo € Xy) < €.

Bai Xue. Sufficient and Necessary Barrier-like Conditions for Safety and Reach-avoid Verification of Stochastic Discrete-
time Systems . Arxiv, 2024.


https://arxiv.org/abs/2408.15572
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Theorem 1 Given a safe set X and an initial set Xy, where Xy € X, if
there exists v(x): X = R such that

(v(x) <1-— €1, Vx € X,
v(x) =0, vx € X,

< E[v(f(x,d))] < v(x), Vx € X,
v(x) =1, Vx € X\ X,

then
PP(vk €N. ¢ (k) € X | xg € Xy) = €.

Equation Relaxation Based Method

)

Theorem 3 Given a safe set X and an initial set X, where Xy € X, if
there exist bounded functions v(x): X = R and w(x): X — R such that

(v(x) <1-— €1, Vx € X,
v(x) = IE[v(f(x, d))], Vx € X,

1v0) = E[w(f(x, )| -wx),  VxeX,
v(x) =1, vx € X\ X,

then
Pe( vk € N. ¢ (k) € X | xo € Xy) = €.

Theorem 2 Let X be a closed set. If there exists v(x): X — R such that

(v(x) < ey, Vx € X,

IE[v(f(x, d))] —v(x) < -6, Vx € X,
v > 1, vx € aX \ (X \ X),
Lv(x) =0, vx € X,

then

P°(vk €N. ¢ (k) € X | x9 € Xp) < €.

Theorem 4 Given a safe set X and an initial set Xy, where X;; € X, if
there exist bounded functions v(x): X - R and w(x): X — R such that

(v(x) = 1—¢€,, Vx € Xy,
v(x) < IE[v(f(x, d))], Vx € X,
v(x) < IE‘.[W(f(x, d))] —w(x), Vx € X,
v(x) <1, Vx € X\ X,

then Pe( vk €N. ¢p20(k) € X | x9 € Xp) < €.

.
1 —v(x) withw(x) = M(l — v(x)), where M§ = sup 1 — v(x)

xeX
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Optimization
Doob’s Supermartingale Inequality Based Method
Op1l Max,, €4
(v(x) <1-— €1, Vx € X,
v(x) =0, vx € X,
St IE[v(f(x, d))] < v(x), Vx € X,
(v(x) =1, Vx € X\ X.
P(vk €N. ¢p;° (k) € X | xg € Xy) = €.
Op2 Min,, €,
(v(x) < €y, Vx € Xy,
IE[v(f(x, d))] —v(x) < -6, Vx € X,
S.t. 3 ~ ~
v(x) =1, Vx € 9X \ (X \ X),
v(x) =0, vx € X.
Pe(vk € N. ¢° (k) € X | xg € Xp) < €.

Equation Relaxation Based Method

Op3 Max,, , €1
(v(x) <1-— €1, Vx € X,
v(x) = IE[v(f(x, d))], Vx € X,
M0 = Ew(f G d)] - wo), Vx € X,
v(x) =1, Vx € X\ X.
P°( vk € N. $p° (k) € X | xo € Xp) = €.
Op4 Min,, ,, €,
(v(x) =1 — €y, Vx € X,
v(x) < IE[v(f(x, d))], Vx € X,
St v(x) < IE[W(f(x, d))] —w(x), Vx € X,
v(x) <1, Vx € X\ X.

P(Vk EN. $2 (k) € X | %9 € Xy) < €.

They were relaxed into semi-definite programming problems
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Example

Consider
x(I+1) =(-0.5+d(0))x(D)

* d(-):N->D=[-1,1] ( uniform distribution )
e X ={x|x*-1<0}

e Xo=1{x|(x+0.8)%=0}(G.e,x, =—0.8)

« X={x|x?-2<0}

Op3 and Opd

d 2 4 6 8 10 12 14 16 18 20 22 24 26

€1 | 0.3574 | 0.5890 | 0.6678 | 0.6895 | 0.6917 | 0.7281 | 0.7368 | 0.7549 | 0.7575 | 0.7597 | 0.7622 | 0.7630 | 0.7647

L ea | 1.0000 | 0.9844 | 0.9505 | 0.9489 | 0.9488 | 0.9474 | 0.9242 | 0.9143 | 0.8991 | 0.8991 | 0.8927 | 0.8804 | 0.8771

Opl

The lower and upper bounds of the €1 [ 0.3574 | 0.5890 | 0.6678 | 0.6895 | 0.6917 | 0.7281 | 0.7368 | 0.7549 | 0.7575 | 0.7597 | 0.7622 | 0.7630 | 0.7647

safety probability obtained by Monte

09 [

0.8

Carlo are e, = €, = 0.8312

06 [

os |

04

03
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Safe Probabilistic Invariance Verification of Stochastic Continuous-time Systems

Stochastic continuous-time systems modeled by time-homogeneous SDEs:

dX(t,w) = b(X(t, w))dt + a(X(t, w))dW(t, w),t=>0

Its trajectory
X% (-,w): [0,T*(w)) x Q@ > R"
satisfies
t t
X*o(t,w) = xy + f b(X*o(s,w)ds + ] a(X*o(s,w)dW (s,w)
0 0

Bai Xue, Naijun Zhan and Martin Frinzle. Reach-Avoid Analysis for Polynomial Stochastic Differential
Equations. IEEE Transactions on Automatic Control(IEEE TAC), 69(3): 1882--1889, 2024.
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Given a safe set X (bounded and open) and an 1initial set Xy € X,

the safe probabilistic invariance verification is to compute lower and upper bounds, denoted by €; € [0,1] and
€, € [0,1] respectively, for the safety probability that the system, starting from any state in X, will remain inside
the safe set X for all time, 1.e.,

to compute €; and €, such that

€1 < P(Vt € Rzo.Xxo(t,W) EX | X0 (S .Xo) < €r.
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Doob’s Supermartingale Inequality Based Method

Doob’s Supermartingale Inequality [J. Ville, 1939]

Let (Q4, F, P;) be the probability space and {B;};cy be a non-negative supermartingale, then for b > 0,
B
P,(supB; =b|By)<—=

In [S. Prajna, et. al., 2007(IEEE TAC)],
Given a safe set X and an initial set Xy, where Xy € X, if

) — — S. Prajna, A. Jadbabaie, and G. .
there exist v(x) € C?(X) and u(x) € C?(X) such that !

Pappas. A framework for worst-

fv(x) <1-e¢€, Vx € X, case and stochastic safety verification
Av(x) <0, Vx € X, using  barrier  certificates.  IEEE
v(x) =1 Vx € 0X Transactions on Automatic Control,
- = 52(8):1415-1428, 2007.
\v(x) =0, Vx € X. ®) ’

Then,
P(Vt € RZO' XxO(T,W) eEX | X0 € XO) > €1-
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Doob’s Supermartingale Inequality Based Method

Doob’s Supermartingale Inequality [J. Ville, 1939]

Let (Q4, F, P;) be the probability space and {B;};cy be a non-negative supermartingale, then for b > 0,
B
P,(supB; =b|By)<—=

In [S. Prajna, et. al., 2007(IEEE TAC)],
Given a safe set X and an initial set Xy, where Xy € X, if

) — — S. Prajna, A. Jadbabaie, and G. .
there exist v(x) € C?(X) and u(x) € C?(X) such that !

Pappas. A framework for worst-

fv(x) <1-e¢€, Vx € X, case and stochastic safety verification
Av(x) <0, Vx € X, using  barrier  certificates.  IEEE
v(x) =1 Vx € 0X Transactions on Automatic Control,
- = 52(8):1415-1428, 2007.
\v(x) =0, Vx € X. ®) ’

Then,
P(Vt € RZO' XxO(T,W) eEX | X0 € XO) > €1-

There are no barrier-like conditions based on the Doob’s nonnegative supermartingale inequality that have been
developed in previous studies to examine upper bounds of the reachability probability
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Equation Relaxation Based Method

In [B. Xue, et. al., 2024(IEEE TAC)],
Given a safe set X, a target set X;- and an 1initial set Xj, where X, Xy € X, if
there exist v(x) € C?(X) and u(x) € €?(X) such that

Av(x) = 0,Vx € X,
v(x) = 1y (x) + Au(x),vx € X.

Then,

P(37 € Ryg. X* (1,w) € X;- AVt €10,7]. X¥o(T,w) € X | x5 € Xy) = v(xp),
where

v(x) 0%v(x)
Wb(x)-i— tr(aT(x) e2

a(x))), if x € X\ X,

0, if x € 9X U X,.

0X:dX(t,w) =0

X\ X

dX(t,w) = b(X(t, w))dt + o(X(t, w))dW(t, w)

B. Xue, N. Zhan, and M. Fraenzle. Reach-avoid
analysis for polynomial stochastic differential

equations. IEEE Transactions on Automatic
Control, 69(3):1882—-1889, 2024.
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Equation Relaxation Based Method

0X:dX(t,w) =0

Given a safe set X and an initial set X, where Xy & X, if there exist v(x) €
C?(X) and u(x) € C2(X) such that

Av(x) =0,Vx € X,

v(x) = 15¢(x) + Au(x),vx € X.

X
Then, dx(t,w) = b(X(t,w))dt + a(X(t,w))dW(t,w)
P(37 € Ryg. X% (,w) € X AVL € [0,7). X¥*(T,w) EX | xg € Xp)
= v(xg).
Thus,

P(Vt (S ]RZO' XXo (T,W) EX | X0 € Xo) =1- U(XO).
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Equation Relaxation Based Method

Given a safe set X' and an initial set Xo, where Xy S X, if there exist v(x) €
C2(X) and u(x) € C?(X) such that

v(x) <1—¢, Vx € X,
Av(x) <0, vx € X,
v(x) = 15 (x) + Au(x), Vx € X.

Then,
P(Vt € Ryg. X*o(T,w) € X | xg € Xp) = €.
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Equation Relaxation Based Method

Given a safe set X and an initial set Xy, where X, € X, if there exist v(x) €
C2(X) and u(x) € C?(X) such that

v(x) <1—¢, Vx € X,
Av(x) <0, vx € X,
v(x) = 15 (x) + Au(x), Vx € X.

Then,
P(Vt € Ryg. X*o(T,w) € X | xg € Xp) = €.

l Aulx) = Av(x) =0 Vx € 0X

Theorem 6 Given a safe set X’ and an initial set Xy, where Xy € X, if there
exist v(x) € C%(X) and u(x) € €2(X) such that

v(x) <1—¢, Vx € Xy,
Av(x) <0, Vx € X,
v(x) =1, Vx € 0X,
v(x) = Au(x), Vx € X.

Then,

]P)(Vt € ]REO' XxO(T,W) EX | X0 EXO) = €1.
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Equation Relaxation Based Method

Given a safe set X and an initial set Xy, where X, € X, if there exist v(x) €
C2(X) and u(x) € C?(X) such that

Given a safe set X and an initial set Xj, where X;; € X, if there exist
v(x) € C%(X) and u(x) € C%(X) such that

v(x) <1—¢, Vx € X,, v(x) = 1—ey, Vx € Xy,
Av(x) <0, Vx € X, Av(x) >0, Vx € X,
v(x) = 15 (x) + Au(x), Vx € X, v(x) < 150 (x) + Au(x), vx € X.
Then, Then,
P(Vt € Ryg. X*o(T,w) € X | xg € Xp) = €. P(Vt € Ryg. X*o(T,w) € X | x5 € Xy) < €.
Au(x) = Av(x) =0 Vx € 0X

!

!

Theorem 6 Given a safe set X’ and an initial set Xy, where Xy € X, if there
exist v(x) € C%(X) and u(x) € €2(X) such that

v(x) <1—¢, Vx € Xy,
Av(x) <0, Vx € X,
v(x) =1, Vx € 0X,
v(x) = Au(x), Vx € X.

Then,
]P)(vt € ]REO' XxO(T,W) EX | X0 € XO) = €1.

Theorem 7 Given a safe set X and an initial set Xy, where X € X,
if there exist v(x) € C%(X) and u(x) € €2(X) such that

v(x) =>1—¢y, Vx € Xy,
Av(x) =0, Vx € X,
v(x) <1, Vx € 0X,
v(x) < Au(x), Vx € X.

Then,
P(Vt € Ryg. X*(1,w) € X | x5 € X)) < €.
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Equation Relaxation Based Method

Given a safe set X and an initial set X;, where X; € X, if there exist
v(x) € C%(X) and u(x) € C%(X) such that

v(x) <1-—¢, Vx € X,
Av(x) <0, Vx € X,
v(x) =1, Vx € 0X,
v(x) =0, Vx € X.

Then,

P(Vt € RZO' XxO(T,W) EX | X0 EXO) > €.

)

Theorem 6 Given a safe set X and an initial set Xj, where Xy € X,
if there exist v(x) € €?(X) and u(x) € C%(X) such that

v(x) <1—¢, Vx € Xy,
Av(x) <0, Vx € X,
v(x) =1, Vx € X,
v(x) = Au(x), Vx € X.

Then,
]P)(Vt € RZO' XxO(T,W) € X| X € xo) > €1.

Theorem 7 Given a safe set X and an initial set Xy, where Xy € X,
if there exist v(x) € C?(X) and u(x) € C%(X) such that

v(x) = 1—¢y, Vx € X,
Av(x) =0, Vx € X,
v(x) <1, Vx € X,
v(x) < Au(x), Vx € X.

Then,
P(Vt € Ryg. X¥(1,w) € X | x5 € Xy) < €.
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Optimization
Doob’s Supermartingale Inequality Based Method Equation Relaxation Based Method
Op5 Max,, €1 Op6 Max,, ,, €1
v(x) <1—¢, Vx € X, v(x) <1—¢, Vx € Xy,
Av(x) <0, Vx € X, . Av(x) <0, Vx € X,
s.t. () > 1, Vx € 93X, Svkx) =1, Vx € 0X,
v(x) =0, vx € X. v(x) = Au(x), Vx € X.
P(Vt € Ryg. X*o(7,w) € X | x9 € X)) = €; P(Vt € Ryg. X*0(7,w) € X | x9 € Xo) = &

Op7 Min,, ,, €,
v(x) =1—6y, Vx € X,
s.t. Av(x) =0, Vx € X,
v(x) <1, Vx € 0X,
v(x) < Au(x), Vx € X.
]P’(VtE]RZO.XxO(T,W)EX|xOEXO)SEZ

They were relaxed into semi-definite programming problems
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Example

Consider the stochastic differential equation:
dX,(t,w) = X,(t,w)dt,
dX,(t,w) = — (Xl(t, w) + X,(t,w) + 0.5X3(t, w)) dt + (Xl(t, w) + X,(t, w))dW(t, w).

« thesafesetis X = {(x,x,) | x# +x5—-1<0}
+ the initial set is X = {(ty,xz) | 100(x; + 0.4)2 + 100(x, + 0.5)2 — 1 < 0}

The lower and upper bounds of the safety Op6 and Op7
a] 4 6 g 0 7 E| 6
probability obtained by Monte Carlo are c1 | 03957 | 04217 | 04590 | 0.4660 | 04675 | 0.4682 | 0.4686
2 | 07313 | 0.7279 | 0.7233 | 0.7224 | 0.7216 | 0.7213 | 0.7208
- _ _ Op3 _
€1 = 0.5338 c1 | 03957 | 04217 | 04590 | 0.4660 | 04675 | 04682 | 0.4686
e, = 0.7101
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Conclusion

Two sets of optimizations for computing lower and upper bounds of the safety probability are proposed.

1. The first one is based on Doob’s supermartingale inequality.

2. The second one is based on relaxing an equation that characterizes the exact reachability probability.
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Papers

® Yiqing Yu, Taoran Wu, Bican Xia, Ji Wang, Bai Xue. Safe Probabilistic Invariance Verification for Stochastic Discrete-time
Dynamical Systems. CDC 2023, pp. 5804--5811, 2023.

® Taoran Wu, Yiqing Yu, Bican Xia, Ji Wang and Bai Xue. A Framework for Safe Probabilistic Invariance Verification of
Stochastic Dynamical Systems. Arxiv, 2024.

® Bai Xue, Renjue Li, Naijun Zhan and Martin Fraenzle. Reach-avoid Analysis for Stochastic Discrete-time Systems. In
Proceedings of the 2021 American Control Conference (ACC 2021), pp. 4879-4885, 2021.

® Bai Xue. Sufficient and Necessary Barrier-like Conditions for Safety and Reach-avoid Verification of Stochastic Discrete-
time Systems . Arxiv, 2024.

® Bai Xue, Naijun Zhan and Martin Fraenzle. Reach-Avoid Analysis for Polynomial Stochastic Differential Equations. IEEE
Transactions on Automatic Control(IEEE TAC), 69(3): 1882--1889, 2024.


https://arxiv.org/pdf/2404.09007.pdf
https://arxiv.org/abs/2408.15572
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Extensions

® Bai Xue. Finite-time Safety and Reach-avoid Verification of Stochastic Discrete-time Systems. Arxiv, 2024.

® Bai Xue. A New Framework for Bounding Reachability Probabilities of Continuous-time Stochastic Systems.
Arxiv, 2023.

® Bai Xue. Safe Exit Controllers Synthesis for Continuous-time Stochastic Systems. CDC 2024, 2024.

® Bai Xue. Reach-avoid Controllers Synthesis for Safety Critical Systems. IEEE Transactions on Automatic
Control(IEEE TAC), 2024.
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Thanks for Your Attention!
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