
Piecewise Analysis of Probabilistic Programs
via k-Induction

Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, Shiyang Wu



Probabilistic Programs



Background

• Quantitative analysis of probabilistic programs
• Concerns quantitative properties in many situations: expectation, 

assertion probability, expected running time, etc.

• Derive tight numerical bounds for probabilistic properties

• Synthesis of bounds
• Most previous works consider monolithic bounds.

• Monolithic bounds are either conservative, or not expressive and 
succinct enough



Previous Works

• Synthesis of monolithic polynomials
• (Sub)-Invariants

(Feng et al., ATVA 2017, Chen et al., CAV 2015)
• Probabilistic Program Analysis

(Sankaranarayanan et al., CAV 2013)
• Monolithic polynomial for Termination analysis 

(Chatterjee et al., CAV 2016, TOPLAS 2018)

• Synthesis of (piecewise) bounds to verify an input bound
• Counter-example guided inductive synthesis (Batz et al., TACAS 2023)
• Data-driven Learning (Bao et al., CAV 2022)



This Work

• Target
• Synthesis of tight piecewise polynomial bounds for the expected 

value of certain quantitative properties on probabilistic while loops 
without a target bound to be verified (static analysis)

• Main Ideas
• A novel combination between (latticed) 𝑘-induction and Optional 

Stopping Theorem.

• Novel algorithms to synthesize bounds.



Problem Statements

Given a probabilistic while loop 𝑃 and a return function 𝑓, 
synthesize tight piecewise upper and lower bounds on the 
expected output of 𝑓 after the execution of 𝑃.



Our contributions 

• Explore piecewise information
• Equivalence of k-induction conditions and their applications

• Automated Algorithms
• Propositions and efficient algorithms in constraints derivation

• Novel algorithms for constraints solving:

1. linear cases: reduced to bilinear programming

2. polynomial cases: relaxed to semi-definite programming

• Numerical Repair

• Soundness
• Use Extended OST (Wang et al., PLDI 2024) to ensure the soundness



(Latticed) 𝑘-induction
• Given a monotone operator Φ:

1. the upper 𝑘-induction operator Ψ𝑢in (Batz et al., CAV2021) w.r.t. 𝑢 and Φ is 
defined by Ψ𝑢: 𝑣 ↦ Φ 𝑣 ⊓ 𝑢

2. the upper 𝑘-induction operator Ψ in (Lu et al., APSEC 2022) is defined by Ψ: 𝑣 ↦
Φ 𝑣 ⊓ 𝑣. 

• lower 𝑘-induction operators: replacing the meet operation ⊓ with join ⊔. 

• 1-induction is the special case and has been used extensively in existing work.

Equivalence Theorem: Inductive Theorem:

For any 𝑘, Ψ𝑢
𝑘(𝑢) = Ψ𝑘 𝑢 for any 𝑢. Φ(Ψ𝑢

𝑘 𝑢 ) ≤ 𝑢 ⇒ Φ(Ψ𝑢
𝑘 𝑢 ) ≤ Ψ𝑢

𝑘 𝑢



Some Necessary Definitions
• Syntax:   while (𝜑) {𝐶}

• Characteristic Function——the monotone operator Φ

Φ ℎ ≔ ¬𝜑 ⋅ 𝑓 + 𝜑 ⋅ 𝑝𝑟𝑒𝐶(ℎ)

Informally, the characteristic function Φ outputs 𝑓 if the loop guard 𝜑
is violated and the expected value of ℎ after the execution of the loop 
body 𝐶 otherwise.



A Simplified Growing Walk Example 

while (x >=0) {

if (flip(0.5)){x = -1} 

else {x += 1;

y += x;}

};

return y

Questions:
Return function: 𝑦
Intend  to analyze the expected value of 
𝑦 after the program terminates.

Monolithic polynomial via 1-induction:
Monolithic linear upper bound do not exist.
Monolithic polynomial upper bounds up to 
degree 5 are much more conservative.  
Through our methods: (the exact result)
𝑥 < 0 ⋅ 𝑦 + 𝑥 ≥ 0 ⋅ 𝑥 + 𝑦 + 2



A Simplified Growing Walk Example 

while (x >=0) {

if (flip(0.5)){x = -1} 

else {x += 1;

y += x;}

};

return y

Our approach: (for upper bounds)
Template-based approach:
• polynomial template ℎ
• pre-processing
• Deriving 𝑘-induction-based constraints:

Φ(Ψℎ
𝑘−1 ℎ ) ≤ ℎ

• polynomial solving

The latter two steps are non-trivial and need 
novel algorithms to address it!



Deriving k-induction Constraints
• Transfer Φ(Ψℎ

𝑘−1 ℎ ) ≤ ℎ into a simpler form min ℎ1, ℎ2, … , ℎ𝑛 ≼ ℎ

• We propose an efficient algorithm to obtain the form: 

1. Make a decision whether we continue to unfold the loop at each state we reach.

2. this decision process continues until there are no unfolding to be executed or we 
have already unfolded for 𝑘 times.

3. Each strategy, composed of each decision, decides a distinct loop-free program.



A Simple but Illustrative Example
——for k-induction

while (𝜑) {

if (flip(𝑝)){𝑥 = 𝑎1𝑥 + 𝑏1} 

else {𝑥 = 𝑎2𝑥 + 𝑏2};

return 𝑓(𝑥)

2-induction:

Φ(Ψℎ
1 ℎ ) ≤ ℎ



A Simplified Growing Walk Example 

while (x >=0) {

if (flip(0.5)){x = -1} 

else {x += 1;

y += x;}

};

return y

Deriving k-induction-based constraints:
min ℎ1, ℎ2, … , ℎ𝑛 ≼ ℎ

Each ℎ𝑖 is a piecewise function

Transforms to a Canonical Form:
𝐵1 ⇒ min {𝑒11, … , 𝑒𝑚1} ≤ ℎ, , … ,
𝐵𝑙 ⇒ min {𝑒1𝑙 , … , 𝑒𝑚𝑙} ≤ ℎ



Constraints Solving——Linear Case
Constraints Solving:
1. Transform ∀𝑥, ⋀𝑆𝑖 ⇒ 𝑇𝑖
into ⋀(𝑆𝑖 ∧ ¬𝑇𝑖) is unsatisfiable
(note that ¬𝑇𝑖 can eliminate 
the pointwise minimum 
operation)

2. Consider a variant of  
Motzkin's Transposition 
Theorem and give a proof.

3. Call the bilinear solver



Constraints Solving——Polynomial Case

Transforms to a Canonical Form:
𝐵1 ⇒ min {𝑒11, … , 𝑒𝑚1} ≤ ℎ, , … , 𝐵𝑙 ⇒ min {𝑒1𝑙 , … , 𝑒𝑚𝑙} ≤ ℎ

Relaxing by pulling the minimum inside the implications out as disjunction:
( 𝐵1 ⇒ 𝑒1 ≤ ℎ ∨⋯∨ 𝐵1 ⇒ 𝑒𝑚1 ≤ ℎ ),…
( 𝐵𝑙 ⇒ 𝑒1𝑙 ≤ ℎ ∨ ⋯∨ 𝐵𝑙 ⇒ 𝑒𝑚𝑙 ≤ ℎ )

By Distributive Law:
𝐵1 ⇒ 𝑒1 ≤ ℎ ∧ 𝐵2 ⇒ 𝑒12 ≤ ℎ ∧ ⋯∧ 𝐵𝑙 ⇒ 𝑒1𝑙 ≤ ℎ ∨

…∨
𝐵1 ⇒ 𝑒𝑚1 ≤ ℎ ∧ 𝐵2 ⇒ 𝑒𝑚2 ≤ ℎ ∧⋯∧ 𝐵𝑙 ⇒ 𝑒𝑚𝑙 ≤ ℎ

For each case, apply Putinar's Positivstellensatz.



Our Template Algorithm

• Establish polynomial template

• Derive 𝑘-induction condition constraints

• Transforms to a Canonical Form

• Polynomial solving (Linear case and Polynomial Case)



Experimental Evaluation (Piecewise Linear)



Experimental 
Evaluation 
(Piecewise 
Linear)

Comparison with 
monolithic polynomial 
(via 1-induction) 



Experimental Evaluation (Piecewise Polynomial)



Experimental Evaluation (Piecewise Polynomial)

Comparison 
with monolithic 
polynomial (via 
1-induction) 



Conclusion and Future Works

• Piecewise Expectation Analysis
• probabilistic while loops 

• Combination of 𝑘-induction and OST

• polynomial solving

• Future works
more efficient polynomial solving (e.g., bilinear programming)



Thanks for your attention! 

Questions!


